6 resultados para Striatum

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extensive clinical experience of angiotensin converting enzyme inhibitors and angiotensin AT(1) receptor antagonists as antihypertensive agents provide numerous examples of anecdotal evidence of improvements in cognition and mood. This study aimed to determine the effect of chronic treatment with the angiotensin converting enzyme inhibitor, perindopril, and the angiotensin AT(1) receptor antagonist, candesartan, on central neurotransmitter levels in the rat. Perindopril (1.0mg/kg/day) or candesartan (10mg/kg/day) was administered via the drinking water at for 1 week, while controls received water alone. At the end of treatment rats were sacrificed, brains removed and discrete regions dissected and analysed for noradrenaline, dopamine and its major metabolites, and serotonin content. As shown previously we found an increase in striatal dopamine levels after perindopril treatment, though this did not extend to the mesolimbic system with neurotransmitter levels unchanged in the hippocampus, nucleus accumbens and frontal cortex. Conversely, candesartan administration produced no change in dopamine, but significant decreases in both DOPAC and HVA in the striatum. In addition chronic candesartan infusion produced a significant increase in the levels of hippocampal noradrenaline and serotonin; and frontal cortex serotonin content. These results demonstrate that while angiotensin converting enzyme inhibitors and angiotensin AT(1) receptor antagonists act as antihypertensives by affecting the renin-angiotensin system, they have divergent actions on brain neurochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia (SCZ) and bipolar disorder (BP) are associated with neuropathological brain changes, which are believed to disrupt connectivity between brain processes and may have common properties. Patients at first psychotic episode are unique, as one can assess brain alterations at illness inception, when many confounders are reduced or absent. SCZ (N=25) and BP (N=24) patients were recruited in a regional first episode psychosis MRI study. VBM methods were used to study gray matter (GM) and white matter (WM) differences between patient groups and case by case matched controls. For both groups, deficits identified are more discrete than those typically reported in later stages of illness. SCZ patients showed some evidence of GM loss in cortical areas but most notable were in limbic structures such as hippocampus, thalamus and striatum and cerebellum. Consistent with disturbed neural connectivity WM alterations were also observed in limbic structures, the corpus callosum and many subgyral and sublobar regions in the parietal, temporal and frontal lobes. BP patients displayed less evidence of volume changes overall, compared to normal healthy participants, but those changes observed were primarily in WM areas which overlapped with regions identified in SCZ, including thalamus and cerebellum and subgyral and sublobar sites. At first episode of psychosis there is evidence of a neuroanatomical overlap between SCZ and BP with respect to brain structural changes, consistent with disturbed neural connectivity. There are also important differences however in that SCZ displays more extensive structural alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disorder that affects approximately 3-10 people per 100 000 in the Western world. The median age of onset is 40 years, with death typically following 15-20 years later. In this study, we biochemically profiled post-mortem frontal lobe and striatum from HD sufferers (n = 14) and compared their profiles with controls (n = 14). LC-LTQ-Orbitrap-MS detected a total of 5579 and 5880 features for frontal lobe and striatum, respectively. An ROC curve combining two spectral features from frontal lobe had an AUC value of 0.916 (0.794 to 1.000) and following statistical cross-validation had an 83% predictive accuracy for HD. Similarly, two striatum biomarkers gave an ROC AUC of 0.935 (0.806 to 1.000) and after statistical cross-validation predicted HD with 91.8% accuracy. A range of metabolite disturbances were evident including but-2-enoic acid and uric acid, which were altered in both frontal lobe and striatum. A total of seven biochemical pathways (three in frontal lobe and four in striatum) were significantly altered as a result of HD. This study highlights the utility of high-resolution metabolomics for the study of HD. Further characterization of the brain metabolome could lead to the identification of new biomarkers and novel treatment strategies for HD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using 1H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (P<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first 1H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted.